SHORT REPORTS

A CLERODANE LACTONE AND A TREMETONE DERIVATIVE FROM BAHIANTHUS VISCIDUS*

FERDINAND BOHLMANN, RAJINDER K. GUPTA, ROBERT M. KING; and HAROLD ROBINSON;

† Institute for Organic Chemistry, Technical University of Berlin, Strasse des 17. Juni 135, D-1000 Berlin 12, West Germany; ‡ Smithsonian Institution, Washington, DC 20560, U.S.A.

(Received 8 May 1980)

Key Word Index—Bahianthus viscidus; Compositae; diterpene; new clerodane lactone; benzofuran; new tremetone derivative.

The monotypic genus Bahianthus is placed in the Gyptis group of the tribe Eupatorieae (Compositae) near Agrianthus [1]. It was of interest, therefore, to determine whether the chemistry shows relationships between these two genera. The aerial parts of B. viscidus (Baker) K. et R. afforded, in addition to germacrene C and D, caryophyllene, α -humulene, euparin, the angelate 3 [2] and the lactone 1 [3], a further clerodane derivative. The ¹H NMR data (Table 1) indicated the presence of 2, the 16-desoxy derivative of 1. Spin decoupling showed that the double doublets at δ 4.44 and 3.91 were coupled with a broad multiplet at 2.44, which was further coupled with a double doublet at 2.65 and a three-fold doublet at 2.15. This clearly indicated that we were dealing with the protons H-13, H-14 and H-16, as the other signals were very similar to those of 1. This is further supported by the

typical fragment m/e 191 ($C_{14}H_{23}^+$) in the mass spectrum of 2, which is formed by splitting the 9,11-bond. The configuration at C-13 was not determined. Comparing the optical rotation with those of similar diterpenes favoured the presence of a clerodane derivative, a type which is widespread in the tribe Eupatorieae. The roots contained the widespread tridecapentaynene, germacrene C and D, α -humulene, caryophyllene, euparin, the tremetone derivatives 4 [4], 5 [5] and 6 [4], the diketone 8 [2], the corresponding carbinol 9 [2] and the carbinol 10 [2] as well as a new compound, the acetoxyangelate 7 its spectral data being very similar to those of 6 (Table 2).

This investigation showed that the chemistry of *Bahianthus* is not closely related to that of *Agrianthus* [4]. However, relationships to the *Acritopappus* group are obvious.

^{*}Part 304 in the series "Naturally Occurring Terpene Derivatives". For Part 303 see Bohlmann, F., Ziesche, J., King, R. M. and Robinson, H. (1981) *Phytochemistry* **20**, 263.

332 Short Reports

Table 1. ¹H NMR spectral data of compound 2 (270 MHz, CDCl₃, TMS as internal standard)

2-H	2.00 m	16'-H	3.91 dd
3-H	5.19 br. dd	17-H	0.80 d
13-H	2.44 dddd1	18-H	1.58 dd
14-H	2.65 dd	19-H	1.00 s
14'-H	2.15 ddd	20-H	0.73 s
16-H	4.44 dd		

J (Hz): 2.3 ~ 3: 2.18 = 3.18 ~ 2: 8,17 = 6.5; 12,13 = 7; 12,14 = 1.3; 13,14 = 9: 13,14′ = 8: 13,16 = 13.16′ = 7.5: 14,14′ = 17.5: 16,16′ = 9.

Table 2. ¹H NMR spectral data of compounds 6 and 7 (CDCl₃)

	6	7
2-H	5.15 d	5.10 d
3-H	6.10 d	6.18 d
4-H	7.89 s	7.92 s
7-H	6.47 s	6.52 s
9- H	2.56 s	2.56 s
11-H	5.08 br. s	5.08 br. s
11'-H	4.99 br. s	4.98 br. s
12-H	1,76 br. s	1.77 br. s
OCOR	6.48 q	6.47 y
	$2.09 \dot{d}$	2.10 d
	4.74 br. s	4.70 br. s
OAc	1.98 s	2.00 s
ОН	13.04 s	
OMe		3.92 s

J (Hz): 2.3 = 2.5; 3'.4' = 7.

EXPERIMENTAL

The air-dried plant material (voucher RMK 8160, collected in Brazil) was extracted with Et₂O-petrol, 1:2. The resulting extracts were separated by column chromatography (SiO₂, act. grade II) and further by TLC (SiO₂, GF 254). Known

compounds were identified by comparing their IR and ¹H NMR spectra with those of authentic material. The roots (130 g) afforded 2 mg tridecapentaynene 100 mg germacrene D, 50 mg germacrene C. 2 mg α-humulene, 5 mg caryophyllene, 100 mg euparin, 10 mg 4, 10 mg 5, 10 mg 6, 10 mg 7 (Et₂O-petrol, 1:1), 20 mg 8, 10 mg 9 and 5 mg 10, while the aerial parts (440 g) yielded 200 mg germacrene D, 50 mg germacrene C, 10 mg caryophyllene, 5 mg α-humulene, 60 mg euparine, 1 g 1, 10 mg 2 (Et₂O-petrol, 1:3) and 50 mg 3.

16-Hydroxy-kolavene-15-oic acid lactone (2). Colourless gum, IR $v_{\rm max}^{\rm CCL_1}$ cm $^{-1}$: 1785 (γ -lactone), 845 (C=CH): MS m/e (rel. int.): 304.240 (M $^+$, 6) (C $_{20}$ H $_{32}$ O $_2$), 289 (M $_{-}$ Me, 8), 191 (C $_{14}$ H $_{23}^+$, 36), 123 (C $_{0}$ H $_{15}^+$, 92), 55 (C $_{4}$ H $_{-}^+$, 100).

$$[\alpha]_{24}^{2} = \frac{589}{-29.0} \frac{578}{-31.3} \frac{546}{-36.0} \frac{436 \text{ nm}}{-60.0}$$
$$(c = 0.3, \text{ CHCl}_3).$$

 3β -[5'-Acetoxyangeloyloxy]-6-methoxytremetone (7). Colourless gum, IR $v_{\rm max}^{\rm CCL}$ cm $^{-1}$: 1745 (OAc), 1725 (C=CCO₂R), 1675 (PhCO); MS m/e (rel. int.): 388.152 (M $^+$, 80) (C₂₄H₂₄O-), 230 (M $^-$ RCO₂H. 100), 215 (230 $^-$ Me, 78).

$$[\alpha]_{24}^{2} = \frac{589}{-26.2} \frac{578}{-27.5} \frac{546}{-32.0} \frac{436 \text{ nm}}{-62.0}$$

$$(c = 0.8, CHCl_{3}).$$

Acknowledgements—We thank Drs. Scott A. Mori and P. Alvim, Centro de Pesquisas do Cacau at Itabanu, Bahia, Brazil, for their help during plant collection and the Deutsche Forschungsgemeinschaft for financial support.

REFERENCES

- 1. Robinson, H. and King, R. M. (1977) *The Biology and Chemistry of the Compositae* (Heywood, V. H., Harborne, J. B. and Turner, B. L., eds.) p. 455. Academic Press, London.
- 2. Bohlmann, F. and Grenz, M. (1977) Chem. Ber. 110, 295.
- 3. Bohlmann, F., Zdero, C., Gupta, R. K., King, R. M. and Robinson, H. (1980) *Phytochemistry* **19**, 2695.
- Bohlmann, F., Zdero, C. and Grenz, M. (1977) Chem. Ber. 110, 1034.
- 5. Bohlmann, F. and Zdero, C. (1971) Chem. Ber. 107, 964.
- Bohlmann, F., Zdero, C., Robinson, H. and King, R. M. (1980) Phytochemistry 19, 1873.
- 7. Bohlmann, F. and Jakupovic, J. (1980) Phytochemistry 19, 259.